Energy-Related CO2 Emissions Forecasting Using an Improved LSSVM Model Optimized by Whale Optimization Algorithm
نویسندگان
چکیده
Accurate and reliable forecasting on energy-related carbon dioxide (CO2) emissions is of great significance for climate policy decision making and energy planning. Due to the complicated nonlinear relationships of CO2 emissions with its driving forces, the accurate forecasting for CO2 emissions is a tedious work, which is an important issue worth studying. In this study, a novel CO2 emissions prediction method is proposed which employs the latest nature-enlightened optimization method, named the Whale optimization algorithm (WOA), to search the optimized values of two parameters of LSSVM (least squares support vector machine), namely the WOA-LSSVM model. Meanwhile, the driving forces of CO2 emissions including GDP (gross domestic product), energy consumption and population are chosen to be the import variables of the proposed WOA-LSSVM method. Taking China’s CO2 emissions as an instance, the effectiveness of WOA-LSSVM-based CO2 emissions forecasting is verified. The comparative analysis results indicate that the WOA-LSSVM model is significantly superior to other selected models, namely FOA (fruit fly optimization algorithm)-LSSVM, LSSVM, and OLS (ordinary least square) models in terms of CO2 emissions forecasting. The proposed WOA-LSSVM model has the potential to effectively improve the accuracy of CO2 emissions forecasting. Meanwhile, as a new nature-enlightened heuristic optimization algorithm, the WOA has the prospect for wide application.
منابع مشابه
The Short-Term Power Load Forecasting Based on Sperm Whale Algorithm and Wavelet Least Square Support Vector Machine with DWT-IR for Feature Selection
Short-term power load forecasting is an important basis for the operation of integrated energy system, and the accuracy of load forecasting directly affects the economy of system operation. To improve the forecasting accuracy, this paper proposes a load forecasting system based on wavelet least square support vector machine and sperm whale algorithm. Firstly, the methods of discrete wavelet tra...
متن کاملA Novel Hybrid Whale Optimization Algorithm to Solve a Production-Distribution Network Problem Considering Carbon Emissions
Nowadays, there is a great deal of attention for regulations of carbon emissions to enforce the decision-makers of production and distribution networks to redesign their systems satisfactorily. The literature has seen a rapid interest in developing novel metaheuristics to solve this problem as a complicated optimization problem. Such difficulties motivate us to address a production-distribution...
متن کاملForecasting Natural Gas Consumption Using Pso Optimized Least Squares Support Vector Machines
This paper proposes an effective model based on the least squares support vector machines (LSSVM) and the particle swarm optimization (PSO), termed PSO-LSSVM, for prediction of natural gas consumption, as an important energy resource. The salient feature of mapping nonlinear data into high dimension feature space, distinguishes LS-SVM as a powerful approach for forecasting and estimation. Optim...
متن کاملFault Location in Active Distribution Networks Using Improved Whale Optimization Algorithm
To realize the self-healing concept of smart grids, an accurate and reliable fault locator is a prerequisite. This paper presents a new fault location method for active power distribution networks which is based on measured voltage sag and use of whale optimization algorithm (WOA). The fault induced voltage sag depends on the fault location and resistance. Therefore, the fault location can be f...
متن کاملForecasting Energy CO2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model
The accurate forecasting of carbon dioxide (CO2) emissions from fossil fuel energy consumption is a key requirement for making energy policy and environmental strategy. In this paper, a novel quantum harmony search (QHS) algorithm-based discounted mean square forecast error (DMSFE) combination model is proposed. In the DMSFE combination forecasting model, almost all investigations assign the di...
متن کامل